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Outline

Objective

� Give an update on ongoing technical developments

� Share some news from the neighbourhood

Topics

� Interface jump conditions in free surface �ows

� Decomposition method for free surface �ow: relaxation zone s and SWENSE

� Harmonic balance for turbomachinery simulations

� Major numerics clean-up in upcoming foam-extend-4.0 release

� Features and performance update for the coupled p-U solver

� Report from NUMAP Spring 2016

� Summary
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Interface Jump Conditions

Naval Hydro Pack: Interface Jump Conditions

� In free surface �ows, a discrete surface discontinuity exis ts with a sharp change in
properties: � , � : proper handling is needed for accurate free surface simulations

� Huang et.al. (2007) describe a ghost �uid single-phase form ulation of interface
jump conditions in CFD-Ship Iowa

� Extended, modi�ed and numerically improved treatment by Vu k�cević and Jasak
(2015) with 2-phase handling is implemented in the Naval Hydro pack

� Perfectly clean interface: no surface jets

� Pressure force evaluated exactly even for a smeared VOF interface

� Dramatically increased ef�ciency and accuracy of wave mode lling
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Interface Jump Conditions

Interface Jump Conditions: Derivation

� Conditionally averaged momentum equation:

@(� u )
@t

+ r � (� uu ) = r � � ef f � r pd � (g � x r � )

� Looking at the RHS of the equation, the gradient of dynamic pressure (r pd ) is
balanced by the density gradient (r � ).

� The balance between pressure and density gradients happens in the
momentum equation...

� ...which in turn causes spurious air velocities because the pressure–density
coupling should not be resolved in the momentum equation using a segregated
solution algorithm

Numerics Improvements and Validation Results: FOAM-Extend – p. 4



4rd UK and Ireland FOAM User Group Meeting, Exeter Apr/2016

Interface Jump Conditions

Interface Jump Conditions: Derivation

� "Mixture formulation" of the momentum equation:

@u
@t

+ r � (uu ) � r � (� er u ) = �
1
�

r pd

� Dynamic pressure jump conditions at the interface:

[pd ] = � [� ]g � x
�

1
�

r pd

�
= 0

� Interface jumps implemented directly in discretisation operators

� Interface jump condition can be used both with level set and VOF

� . . . and smearing of the surface in VOF no longer affects the pressure forces!

� Extension to viscous force jump can be performed but currently not used
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Interface Jump Conditions

Interface Jump Conditions: Results

� Example: 2D ramp with free surface

� Relative error for water height at the outlet is � 0:34% compared to analytical
solution

� Note sharp pd jump and � distribution

� The simulation with interFoam is not stable due to spurious air velocities
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Interface Jump Conditions

Interface Jump Conditions: Results

� Example: KCS sinkage and trim (Tokyo 2015 Workshop)
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Decomposition Models

Decomposition Models: Wave Relaxation Zones and SWENSE

� General second-order CFD methodology brings a relatively high discretisation
error: requirements on time-step and mesh size for realistic (irregular) wave
propagation are high

� Introduction of sea states into a CFD domain typically cannot be done well using
conventional boundary conditions: a better method is needed

� Relaxation Zone Approach

� Relaxation zones at edges of the domain are identi�ed and the CFD solution
�elds are implicitly blended with prescribed wave �elds

� In the bulk of the domain, conventional CFD methodology is used

� Domain-Wide Decomposition Approach (SWENSE)

� Governing equations are decomposed into the incident and diffracted
(correction) component, which together make up the complete non-linear CFD
solution, equivalent to solving Navier-Stokes free surface �ow equations

� Incident �elds are obtained from (complex) potential theor y models

� CFD methodology is used to solve for the correction component

� Both approaches have advantages, depending on the level of non-linearity in the
region of interest
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SWENSE Solver

Decomposition Models: Wave Relaxation Zones and SWENSE

� Conventional VOF is not appropriate for SWENSE decomposition: the Naval
Hydro pack is using alternative interface capturing techniques

� Implicitly redistanced level set method
� Phase �eld method

� Modi�cations in implicit �eld blending and numerics

� Result: highly accurate low-cost simulations: approx. 10 times faster than
conventional CFD methodology; sea-keeping approx. 100 times faster
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SWENSE Solver

Naval Hydro Pack: Tokyo 2015 Validation

� Detailed validation and veri�cation (mesh uncertainty, pe riodic uncertainty)

� Steady resistance, KCS hull: Case 2.1

� Added resistance in head waves, 5 heights: Case 2.10

� Added resistance in oblique waves: 5 wave directions: Case 2.11
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Harmonic Balance Solver

Harmonic Balance Method: Work-Flow

� Variables are developed into Fourier series in time with n-harmonics and
substituted into transport equation

� Transport equation with n sine and n cosine parts + mean part is obtained and
written as a set of 2n + 1 equations in frequency domain

� Equations are transformed back to time domain in order to be able to use
time-domain boundary conditions and time-domain non-linear �ow solver

Harmonic Balance in FOAM-Extend

� Harmonic balance decomposition does not relate to a special physics model:
implement HB as a choice of “temporal discretisation” scheme

� Geometric aspects of harmonic balance can be tackled without change

� Currently, HB is implemented in a segregated mode: low memory, and explicit
inter-mode coupling terms. Analysis shows issues for HB without a dominant
mean �ow component: working towards coupled implicit HB solver

� Author: Gregor Cvijetić, Uni Zagreb
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Harmonic Balance Solver

Rapid Simulation of Non-Linear Periodic Flow: Harmonic Balance

� A variable is presented by a Fourier series, using �rst n harmonics and the mean:
replacing a transient simulation with a set of coupled steady-state problems

� Periodicity is independently developed in each computational point

� Non-linear interaction is captured without simpli�cation

� Example: Harmonic Balance scalar equation set

r � (uQt j ) � r � ( r Qt j ) = �
2!

2n + 1

 
2nX

i =1

P( i� j) Qt i

!

Pi =
nX

k =1

k sin(k!i � t ); for i = f 1;2ng:

� A transient equation is replaced by a set of n coupled quasi-steady coupled
equations of the same type

� Physical justi�cation: if a functional form of temporal var iation is known, the
function and its time derivative can be reproduced from a small number of data
points by �tting a prescribed harmonic function (spectral t ime accuracy!)
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Harmonic Balance Solver

Harmonic Balance for Navier-Stokes Equations

� Harmonic balance momentum equation

r � (u t j u t j ) � r � ( r u t j ) = �
2!

2n + 1

 
2nX

i=1

P( i� j) u t i

!

� Harmonic continuity equation
r � u t j = 0 :

� Harmonic scalar transport

r � (u t j Qt j ) � r � ( r Qt j ) = �
2!

2n + 1

 
2nX

i=1

P( i� j) Qt i

!

� Physical justi�cation: each t j instance represents a “single-time-step” solution;
time derivative terms couple solution �elds to each other
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Harmonic Balance Solver

Harmonic Balance Solver: ERCOFTAC Centrifugal Pump

� Validation of harmonic balance in turbulent incompressible periodic �ow

� HB simulations performed using 1 and 2 harmonics: rotor and stator blade count

� Results compared against full transient simulation: excellent agreement

� Integral properties: typical error of 2%

� Local solution features: pressure on surface in time

� Mode and nature of �ow instability

� Results are signi�cantly better than expected!

� Substantial reduction in simulation time:
� Intel Core i5-3570K, 3.4 GHz computer with 16 GB memory
� Transient run needs approx. 50 blade passages to become quasi-periodic

Transient HB, 1 h HB, 2 h

Simulation time 5 hrs/rotation 52 mins 78 mins

Iterations 600, dt = 5e-5 s 3000 2400
1 rotation = 0.03 s
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Harmonic Balance Solver

Harmonic Balance Solver: ERCOFTAC Centrifugal Pump
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Transient solver HB, 1 h error, % HB, 2 h error, %

Ef�ciency 89.72 93.55 4.26 90.07 0.39
t = T

3 Head 81.48 83.37 2.32 83.04 1.92
Torque 0.0297 0.0305 2.65 0.0303 2.03

Ef�ciency 89.92 92.07 2.38 93.85 4.36
t = 2T

3 Head 81.48 83.45 2.41 83.13 2.02
Torque 0.0296 0.0304 2.64 0.0303 2.28

Ef�ciency 89.83 89.63 0.22 91.68 2.07
t = T Head 81.49 83.09 1.96 82.94 1.77

Torque 0.0297 0.0304 2.65 0.0303 2.28
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Harmonic Balance Solver

Harmonic Balance Solver: Transient and Harmonic Balance ERCOFTAC Centrifugal
Pump

Numerics Improvements and Validation Results: FOAM-Extend – p. 16



4rd UK and Ireland FOAM User Group Meeting, Exeter Apr/2016

Clean-Up of Numerics in FOAM

Numerics Clean-Up in the New Release: foam-extend

� Complaints about inconsistent numerics at Oct/2015 ESI User Group Meeting

� (Minor) Dependence of the solution on time-step size and relaxation factor

� Noisy pressure trace in simulations with rotating interfaces

� Removed ddtPhiCorr and resolved the problem in top-level code

� Basic numerics improvements: “I have �xed icoFoam and simpleFoam ”

� Transient dynamic mesh simulations with topo changes: clean force/pressure
trace!

� Compressible �ow solver improvements: “Henrik has �xed sonicFoam ” (and
also coupled compressible rhoPUCoupledFoam )

� Coupled p-U solver performance and coupled implicit turbulence models
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Performance of the Coupled p-U Solver

Performance Improvements and Extensions in the Coupled p-U Solver

� Improvements in performance for the coupled solver: consistency, numerics

� Extension to compressible �ows, MRF and porous media (impli cit!)

� Major performance jump: block-coupled AMG with additive correction
(Hutchinson 1988)

� Block-coupled k � � and k � ! SST turbulence models
� Turbulence equations solved in a single block-coupled system

� Analysis of source terms to establish favourable cross-equation coupling

� Implemented in Diploma Thesis assignment: Robert Keser, Uni Zagreb

� Example: steady (MRF) and transient centrifugal pump
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Performance of the Coupled p-U Solver

Performance Improvements and Extensions in the Coupled p-U Solver
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NUMAP Spring 2016

NUMAP Spring 2016

� NUMAP Spring just completed: report by Bernardas Jankauskas, Uni Exeter

� ESI/OpenCFD sponsoring the 2016 NUMAP Spring School: Thank You!

� NUMAP Summer 2016: 22/Aug – 2/Sep/2016 applications open
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Summary

UK OpenFOAM User Day

� Who's next?

NUMAP-FOAM Summer School 2016
Zagreb Croatia, 22/Aug–2/Sep/2016

11th OpenFOAM Workshop
26–30/Jun/2016 Guimares, Portugal
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